Flattr.com button

  • [[!flattr url="http://meng6.net"]]
  • [[!flattr url="http://meng6.net" button=compact]]

Hyperlink

Hyperlinks to external URL's

Hyperlinks to pages inside the website

Table

Mult-line code block in a table cell

col1 col2
c11
code line 1
code line 2
c21 c22

Code

$ sudo apt-get install texlive

data table

symbol names value identities mnemonic
e Euler's constant 2.718281828459045... e^i\pi + 1 = 0
π 3.1415926 e^{i\pi} + 1 = 0 山巔一寺一壺酒(3.14159), 爾樂苦煞吾(26535)。把酒吃(897),酒殺爾(932),殺不死(384),樂爾樂(626)。| 要是要我酒(14159),爾樂舞扇舞(26535)。把酒吃酒散(89793),爾散把四柳(23846)。二柳似三杉(26433),拔杉爾吃酒(83279)。勿憐爾拔吧(50288),死一救其一(41971)。...
τ 6.2831853071795864769252... e^{i\tau} = 1

Direct data download

Escaping

\[\[some text\]\]

[[some text]]

x[[{1, 3}, {2, 3}]]

teximg

[[!teximg Error: <a href="./d088d89b2dcbccb799eaa48c87efbf1c.log">failed to generate image from code</a>]]

Euler's identity which have five important mathematical constants $$$e$$$, $$$\pi$$$, $$$0$$$, $$$1$$$, $$$i$$$:

$$$e^{i\pi} + 1 = 0$$$

This is a Block level [[!teximg Error: <a href="./3095f5fc2cbe648aee1758943ae8c16e.log">failed to generate image from code</a>]] formula, and this is an inline level $$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$$ formula.

Footnotes

This is a sentence [1].

TeX syntax

Escape special characters in Markdown

  • [ escaped as \[
  • _ escaped as \_
  • * escaped as \*
  • some \ might need to be written as \\

Examples:

The Quadratic Formula

[[!teximg Error: <a href="./5f04e4469ad3016fe9ec0d36d211fb70.log">failed to generate image from code</a>]]

The Lorenz Equations

[[!teximg Error: <a href="./1805806a095ab745b2640b02e6864290.log">failed to generate image from code</a>]]

The Cauchy-Schwarz Inequality

\[ \left( \sum_{k=1}^n a_k b_k \right)2 \leq \left( \sum_{k=1}^n a_k2 \right) \left( \sum_{k=1}^n b_k2 \right) \]

A Cross Product Formula

\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]

The probability of getting $$$k$$$ heads when flipping $$$n$$$ coins is

\[P(E) = {n \choose k} pk (1-p)^{ n-k} \]

An Identity of Ramanujan

\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]

Maxwell’s Equations

\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]

A Rogers-Ramanujan Identity

\[ 1 + \frac{q2}{(1-q)}+\frac{q6}{(1-q)(1-q2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \]

TeX syntax using MathJax

Escape special characters in Markdown

  • [ escaped as \[
  • _ escaped as \_
  • * escaped as \*
  • some \ might need to be written as \\

Examples:

The Quadratic Formula

$$ x = {-b \pm \sqrt{b2-4ac} \over 2a} $$

The Lorenz Equations

$$ \begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} $$

The Cauchy-Schwarz Inequality

\[ \left( \sum_{k=1}^n a_k b_k \right)2 \leq \left( \sum_{k=1}^n a_k2 \right) \left( \sum_{k=1}^n b_k2 \right) \]

A Cross Product Formula

\[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \]

The probability of getting $$$k$$$ heads when flipping $$$n$$$ coins is

\[P(E) = {n \choose k} pk (1-p)^{ n-k} \]

An Identity of Ramanujan

\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]

Maxwell’s Equations

\[ \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} \]

A Rogers-Ramanujan Identity

\[ 1 + \frac{q2}{(1-q)}+\frac{q6}{(1-q)(1-q2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \]

References


  1. This is a footnote.
blog comments powered by Disqus